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ESTIMATION OF DRONING PERTURBATION PARAMETERS IN SHEAR FLOWS 

OF A VISCOUS STRATIFIED FLUID+: 

O.R. KOZYREV and YU.A. STEPANYANTS 

Estimates of growing linear perturbation parameters in shear 
plane-parallel viscous fluid flows are obtained, based on the integral 
relations resulting from the generalized Orr-Sommerfeld equation taking 
stratification into account and boundaries are determined for the domain 
containing the complex phase velocity. 

1. Attempts to construct a stability theory for shear flows in a linear approximation 
while simultaneously taking account of the effects of viscosity and stratification were 
apparently first made by Drazin ll/ who derived the fundamental equation describing the 
vertical structure of the perturbed stream function for plane-parallel flows. For a fluid 
with constant viscosity in the Boussinesq approximation /2/ this equation takes the form 

The prime denotes differentiation with respect to the vertical coordinate Z: m(z) is 
the part of the stream function 11) for perturbations of the form v = cp (2) exp (ia (X - et)), U (:I, 5' (21 
are dimensionless functions describing the Brent-Vaisala velocity and frequency profiles /2/, 
respectively, governed by the vertical density distribution P (2). It is convenient to select 
the normalization of these functions for the sequel such that their maximum values equal 
unity. The parameters in (1.1) have the following meaning: Pie is the Reynolds number of 
the main flow, Ri is the Richardson number i2/, and c = c,+ iei is a complex phase velocity 
of the perturbation normalized to the characteristic velocity of the main flow. 

Eq.(l.l) supplement&with boundary conditions corresponding to the presence of solid 
walls at 2=0 and 3=1 

'p (0) = q? (1) = 'p' (0) = cp' (I) = 0 (1.2) 

forms a boundary value problem in which e plays the part of the spectral parameter while m(z) 
is the eigenfunction, where it follows from the form of the perturbed stream function @ that 
the presence of a positive imaginary part in e denotes instability for the flow under con- 
sideration. Note that (1.1) reduces to the well-known Taylor-Goldstein equation /2/ as 
Re-m and to the Orr-Sommerfeld equation for Ri=O /3, 41. If Ri=0 while He-Co, 
then (1.1) is the Rayleigh equation /3, 4/. 

We turn our attention to the fact that the Drazin Eq.Cl.1) remains singular (due to the 
last component in the left side) even in the presence of viscosity, which when taken into 
acount ordinarily removes the singularity in the Rayleigh equation and converts it into an 
Orr-Sommerfeld equation. In this case, the singularity can be eliminated only by taking 
account of additional physical factors, heat or salt diffusions that influence the density 
distribution p(z) (whereupon the order of Eq.tl.1) is however increased to six). 

Thus, determination of the dispersion dependence of c on a for different Re and Hi flow 
parameters is required in the formulation presented. The values of the parameters that 
correspond to instability of the fundamental flow U (2) will form a certain domain in the 
three-dimensional space a, Re, Ri. Investigations conducted earlier were ooncerned with 
estimates of the boundaries of this domain in the planes cc and Rs /3, 4/ and a and Hi 
15-a/. The purpose of the present paper is to obtain estimates for the instability domain 
boundaries in the three-dimensional space of the parameters. 

2. We will write the integral resulting from (1.1). To do this we multiply (1.1) by 
the complex-conjugate function a (2) and integrate the result with respect to z between 0 
and 1. Taking account of the boundary conditions (l.Z), we arrive at a complex integral 
relation (the limits of integration are omitted for brevity) 
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We separate out real and imaginary part of e in (2.1) 
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(2.‘) 

ej = _& 
+ 

; (Q-Q)- &_(I;d + 2a%12 +cz*I& 
(2.3) 

A+ = (I,%+ a210a) 2 Ri J 

Using these two equations, we obtain constraints on the phase velocity and the 
perturbation growth increment. 

We start with (2.3) by assuming a+>o. Firstly.we note that 

~Q-~lI~IU'(~'~-~~)l~~~~2~ilmaxfl~/l~‘l~~~~2~lI,,,IoIt 

The Cauchy-Schwartz inequality is used here. We now estimate the integral .I. We have 

J = .Vk,, IOS/cC = Io+is (2.4) 

(according to the normalization taken ?;max=I). We afterwards obtain 

e,GKI U’l,,, -(a Re)%'(Ri, a,eI), K = I&/(11* + &I,*), 

S = (Ri, a,~,)= (I? + 2a~11~+c&*)/(1,~-+ a~I,*+ Ri c;~.I$) (2.5) 

This inequality contains use functionals I". I,,I, of the unknown eigenfunction cp (2) 
and its derivatives; consequently, it is not suitable for practical utilization in such form. 
However, we take account of the obvious inequalities 131 

(2.6) 

Furthermore, we find the lower bound of S (Ri, a, ci) . The appropriate variational problem 
for the extremum of the functional S turns out to be fairly complicated and its solution 
cannot be found successfully without a computer. An approach associated with searching for 
approximate lower bounds for S turns out to be more fruitful. It can be shown that in 
addition to the trivial estimate S,,,=O it is easy to obtain a number of other estimates 
that are more meaningful and not equivalent to each other, which will influence the estimation 
of the desired quantity c, in the long run. 

Different methods to find the lower bound for S are presented in the Appendix. Replacing 
S by one of the estimates S, obtained and using (2.6), we strengthen the inequality (2.5) 

eI<51Ul~ar -(a F&)-&S, (Ri,cr,e& x -7 ~a~(Z~-l,(~)-l) (2.7) 

As is seen from (2.7), this inequality yields a domain in parameter space within which 
the quantity c, of the instability increment v=acI, should be enclosed provided there is 
an instability. The domain boundaries depend on the method of estimating S, but other par- 
ameters being equal that estimate should be chosen that yields the domain of minimal dimen- 
sions. 

We also note the interesting fact that in the presence of stable stratification in the 
fluid (Ri) 0, N2> 0) the sign of cI (i.e., perturbation growth or damping) depends ex- 
plicitly on the Reynolds number but is independent of the Richardson number. Indeed, the 
denominator in (2.3) for CI is always positive while the numerator can have different signs 
depending on the magnitude of the coefficient of Re. Consequently, the sufficient conditions 
obtained earlier for the stability of a homogeneous fluid /3/ are carried over automatically 
to a stratified fluid. 

We now examine (2.2) and obtain an estimate for the perturbation phase velocity by 
assuming the fluid to be weakly stratified jRiei). Using the theorem of the mean for values 
of functionsin a segment we write 

c, = U (21) +'/&J* (22) IoBlA_ (2.8) 
where 21, I¶ are certain points within the segment LO, 11. The assumption of the smallness 
of Ri enables us to consider A_>O. This will be known to be ensured if the following 
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inequality is satisfied 
h > 0, h .: b $72 -;- SL.: It i c,-’ 

(this can be shown by using (2.4) and (2.611. 
Let the flow profile be such that U" (-1 > 11: then obviously % > U",,,,. but cc : k l,Ul 

-* ‘i,U,,,/6 on the other hand. Therefore, in this case we obtain 

Umili 4 "r <u",,, 7 L/I";~,.~,!8 (‘&!I) 

If U" (3) < 0 for any z, we similarly find 

J' + “1% u,,ili/b < cr 4 bnl;,, nili, (2.03) 

Finally, if U"(z) changes sign in the segment I& 11 then 

u,i*>+'lZ umJ,/s< "r< Um,x i %U,,,iS (2.11) 

The estimates (2.9)-(2.11) generalize those obtained earlier for a homogeneous fluid 

/3/. They can be considered to be the same as analogues of the Howard theorem on a semicircle 
and its generalizations /S-S/ in the sense that they constrain the domain of allowable values 
of the complex phase velocity of growing perturbations in the complex c plane. 

Appendicc. We present several different lower bounds for the functional S (Ri, a, c,) > 0. 
lo. We rewrite S in the form 

(A.l) 

Furthermore we use the well-know* inequalities f3/ 

r12/r,z > ne/4, 1,2/112 > 4i+, 1$/1$>(4,73)a (A.21 

and discard the positive fraction proportional to Ri2 in (A.1). We then obtain 

n~(4n~-+-a~-+- Ri q-2) 
n~+4(a*4Rici-*f 

(A.31 

2O. Another estimate for S can be obtained by adding the quantity J,$ known to be non- 
negative in the denominator 

IA.41 

We replace M by a smaller value by using (A.21, strengthening the inequality (A.4) and we 
finally obtain 

2aa f(4,73r+ a2(n*/Z + u*)j 
' ' (4,73)"+cz*(n*/2 + %a+ 2Riei+) (A.51 

3*. Still another method of estimation can be obtained for S by discarding the quantity 

JZ > 0 in the numerator and using the inequality (A.21 

(A.61 

A number of lower bounds for the functional S can also be constructed in a similar manner, 
whereupon different estimates will be obtained for the quantity ci. Ed& of the estimates 
limits a certain domain in the parameter space (He, Ri, o, c,) . The true value of e, should 
be within all these domains. In conclusion, we note that the estimates (A.3), (A.51 and 
(A.61 presented above are independent in the sense that none of them is included in the others 
uniformly in a. 
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THE PASSAGE OF A NON-STATIONARY PULSE THROUGH A LAYER WITH DAMPIN~~~ 

M.A. SUMBATYAN and V.YA. SYCHAVA 

The one-dimensional problem of the passage of a non-stationary 
stress pulse through an acoustic layer possessing internal friction is 
examined. The damping in the layer is described by the model of a Voigt 
medium /l/. The use of a Laplace transformation in time reduces the 
problem to the evaluation of a certain contour integral. The integrand 
has a denumerable number of poles and one essential singular point in 
the complex plane. It is proved that the integral under consideration 
can be evaluated in the form of a series of residues of the integrand. 

1. Let a stress pulse ~~=~~(tf, z=O be incident on a layer O(z<h. We consider 
the layer to be a solid body possessing internal friction. The Voigt model /2/ 

I& = hu' + qu" (1.1) 
is the standard model for internal friction for acoustic wave propagation, where u = UI (2. ti 
is the displacement h is the elastic modulus q is the viscosity, and differentiation with 
respect to time is denoted by a dot and with respect to the coordinate z by a prime. Adding 
the equation of motion pu" =ez', to (1.1) we arrive at an equation in the function u 

pu" = /lb* + qu** (1.2) 
To fix our ideas, we consider the opposite face of the layer stress-free. Then the 

boundary conditions have the form 

Xu’ + ‘1”’ = PO V), 2 = 0 
0, z=h 

(1.3) 

For simplicity we consider the initial conditions to be zero u = u‘ = 0, t = 0. 
Applying a Laplace transformation in time to the relationships (1.21 and (1.3), we obtain 

for the ,most interesting characteristic, namely, the rate of displacement of the face z=h 

&t-f41 

u (t, h) = 1 s Po(s)~"dr 2nip .a WV) 
9 Y=Y(P)=vc*+w h>O 

&-f-a 

(1.4) 

c = &frp. 8 = q/p 

Here e is the speed of sound, and p, (8) is the Laplace transform of the function I,,, 


